Show HN: Context42 – capture your coding style from across your projects
Show HN (score: 5)Description
Hey HN,
I've been building Context42 to solve a problem that's been bugging me: getting AI to write code like me, and helping disseminate coding best practices.
The core insight is simple - your existing code is already your best style guide. Instead of debating tabs vs spaces or where to put your curly braces, Context42 analyzes your actual codebase and generates comprehensive style documentation using Google's Gemini AI.
Here's what makes it special:
1. *Language-aware analysis* - It groups files by language and generates specific style guides for each. Your TypeScript patterns won't bleed into your Python conventions.
2. *Dependency-smart processing* - It analyzes child directories before parents, building up context as it goes. This means it understands your module structure and can identify patterns that emerge across your architecture.
3. *Built for real codebases* - With configurable concurrency, resume capability, and automatic cleanup, it's designed to handle everything from small projects to massive monorepos. The terminal UI (built with Ink/React) gives you real-time progress on what's happening.
4. *Pragmatic over prescriptive* - Instead of enforcing arbitrary rules, it documents what you're already doing. This makes it easier to onboard new developers and maintain consistency without religious debates.
The technical approach is interesting too - it uses a worker pool pattern with abort controllers for graceful shutdown, SQLite for persistence (so you can resume failed runs), and a file registry system that guarantees cleanup even on crashes.
I built this because I believe the best documentation is the kind that reflects reality, not aspirations. Your code style isn't what you think it should be - it's what it actually is. And that's worth documenting.
You can check it out at: https://github.com/zenbase-ai/context42
Would love to hear your thoughts, especially if you've tackled similar problems in your teams. What's worked for you in maintaining code consistency at scale?
More from Show
Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust)
Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust) Hi HN,<p>I built KeyEnv because I was tired of the "can you Slack me the Stripe key?" workflow.<p><pre><code> The problem: My team's secrets lived in a mix of Slack DMs, shared Google Docs, and .env files that definitely weren't in .gitignore at some point. Enterprise tools like Vault required more DevOps time than we had. Doppler was close but felt heavier than we needed. What KeyEnv does: keyenv init # link project keyenv pull # sync secrets to local .env keyenv run -- npm start # inject secrets, run command That's basically it. Secrets are encrypted client-side (AES-256-GCM) before leaving your machine. Zero-knowledge architecture—we can't read your secrets even if we wanted to. Technical details: - Single Rust binary, no runtime dependencies - Works offline (cached secrets) - RBAC for teams (owner/admin/member/viewer) - Service tokens for CI/CD - Full audit trail Honest tradeoffs: - SaaS only, no self-hosted option - Fewer integrations than Doppler - If you need dynamic secrets or PKI, use Vault Pricing: Free tier (3 projects, 100 secrets), $12/user/month for teams. Would love feedback on the CLI UX and any rough edges. Happy to answer questions about the architecture. </code></pre> <a href="https://www.keyenv.dev" rel="nofollow">https://www.keyenv.dev</a>
Show HN: WebTerm – Browser-based terminal emulator
Show HN: WebTerm – Browser-based terminal emulator
Show HN: WebGPU React Renderer Using Vello
Show HN: WebGPU React Renderer Using Vello I've built a package to use Raph Levien's Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code
Show HN: On the edge of Apple Silicon memory speeds
Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB/s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU's how benchmark works on those. I have been able to test this on M1 and M4.<p>command : 'memory_benchmark -non-cacheable -count 5 -output results.JSON' (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: "copy_gb_s": { "statistics": { "average": 106.65421233311835, "max": 106.70240696071005, "median": 106.65069297260811, "min": 106.6336774994254, "p90": 106.66606919223108, "p95": 106.68423807647056, "p99": 106.69877318386216, "stddev": 0.01930653530818627 }, "values": [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, "read_gb_s": { "statistics": { "average": 115.83111228356601, "max": 116.11098114619033, "median": 115.84480882265643, "min": 115.56959026587722, "p90": 115.99667266786554, "p95": 116.05382690702793, "p99": 116.09955029835784, "stddev": 0.1768243167963439 }, "values": [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, "write_gb_s": { "statistics": { "average": 65.55966046805113, "max": 65.59040040480241, "median": 65.55933583741347, "min": 65.50911885624045, "p90": 65.5840272860955, "p95": 65.58721384544896, "p99": 65.58976309293172, "stddev": 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: 'memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON'<p>Example M4 from 100 loops: "sequential_forward": { "bandwidth": { "read_gb_s": { "statistics": { "average": 116.38363691482549, "max": 116.61212708384109, "median": 116.41264548721367, "min": 115.449510036971, "p90": 116.54143114134801, "p95": 116.57314206456576, "p99": 116.60095068065866, "stddev": 0.17026641589059727 } } } }<p>"strided_4096": { "bandwidth": { "read_gb_s": { "statistics": { "average": 26.460392735220456, "max": 27.7722419653915, "median": 26.457051473208285, "min": 25.519925729459107, "p90": 27.105171215736604, "p95": 27.190715938337473, "p99": 27.360449534513144, "stddev": 0.4730857335572576 } } } }<p>"random": { "bandwidth": { "read_gb_s": { "statistics": { "average": 26.71367836895143, "max": 26.966820487564327, "median": 26.69907406197067, "min": 26.49374804466308, "p90": 26.845236287807374, "p95": 26.882004355057887, "p99": 26.95742242818151, "stddev": 0.09600564296001704 } } } }<p>Thank you for reading :)
No other tools from this source yet.