Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust)

Show HN (score: 5)
Found: January 18, 2026
ID: 3046

Description

CLI Tool
Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust) Hi HN,

I built KeyEnv because I was tired of the "can you Slack me the Stripe key?" workflow.

  The problem: My team's secrets lived in a mix of Slack DMs, shared Google Docs, and .env files that definitely weren't in .gitignore at some point. Enterprise tools like Vault required more DevOps time than we had. Doppler was close but felt
  heavier than we needed.

  What KeyEnv does:
  keyenv init          # link project
  keyenv pull          # sync secrets to local .env
  keyenv run -- npm start   # inject secrets, run command

  That's basically it. Secrets are encrypted client-side (AES-256-GCM) before leaving your machine. Zero-knowledge architecture—we can't read your secrets even if we wanted to.

  Technical details:
  - Single Rust binary, no runtime dependencies
  - Works offline (cached secrets)
  - RBAC for teams (owner/admin/member/viewer)
  - Service tokens for CI/CD
  - Full audit trail

  Honest tradeoffs:
  - SaaS only, no self-hosted option
  - Fewer integrations than Doppler
  - If you need dynamic secrets or PKI, use Vault

  Pricing: Free tier (3 projects, 100 secrets), $12/user/month for teams.

  Would love feedback on the CLI UX and any rough edges. Happy to answer questions about the architecture.
https://www.keyenv.dev

More from Show

Show HN: WebTerm – Browser-based terminal emulator

Show HN: WebTerm – Browser-based terminal emulator

Show HN: WebGPU React Renderer Using Vello

Show HN: WebGPU React Renderer Using Vello I've built a package to use Raph Levien's Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code

Show HN: On the edge of Apple Silicon memory speeds

Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB&#x2F;s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU&#x27;s how benchmark works on those. I have been able to test this on M1 and M4.<p>command : &#x27;memory_benchmark -non-cacheable -count 5 -output results.JSON&#x27; (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: &quot;copy_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 106.65421233311835, &quot;max&quot;: 106.70240696071005, &quot;median&quot;: 106.65069297260811, &quot;min&quot;: 106.6336774994254, &quot;p90&quot;: 106.66606919223108, &quot;p95&quot;: 106.68423807647056, &quot;p99&quot;: 106.69877318386216, &quot;stddev&quot;: 0.01930653530818627 }, &quot;values&quot;: [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 115.83111228356601, &quot;max&quot;: 116.11098114619033, &quot;median&quot;: 115.84480882265643, &quot;min&quot;: 115.56959026587722, &quot;p90&quot;: 115.99667266786554, &quot;p95&quot;: 116.05382690702793, &quot;p99&quot;: 116.09955029835784, &quot;stddev&quot;: 0.1768243167963439 }, &quot;values&quot;: [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, &quot;write_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 65.55966046805113, &quot;max&quot;: 65.59040040480241, &quot;median&quot;: 65.55933583741347, &quot;min&quot;: 65.50911885624045, &quot;p90&quot;: 65.5840272860955, &quot;p95&quot;: 65.58721384544896, &quot;p99&quot;: 65.58976309293172, &quot;stddev&quot;: 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: &#x27;memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON&#x27;<p>Example M4 from 100 loops: &quot;sequential_forward&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 116.38363691482549, &quot;max&quot;: 116.61212708384109, &quot;median&quot;: 116.41264548721367, &quot;min&quot;: 115.449510036971, &quot;p90&quot;: 116.54143114134801, &quot;p95&quot;: 116.57314206456576, &quot;p99&quot;: 116.60095068065866, &quot;stddev&quot;: 0.17026641589059727 } } } }<p>&quot;strided_4096&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.460392735220456, &quot;max&quot;: 27.7722419653915, &quot;median&quot;: 26.457051473208285, &quot;min&quot;: 25.519925729459107, &quot;p90&quot;: 27.105171215736604, &quot;p95&quot;: 27.190715938337473, &quot;p99&quot;: 27.360449534513144, &quot;stddev&quot;: 0.4730857335572576 } } } }<p>&quot;random&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.71367836895143, &quot;max&quot;: 26.966820487564327, &quot;median&quot;: 26.69907406197067, &quot;min&quot;: 26.49374804466308, &quot;p90&quot;: 26.845236287807374, &quot;p95&quot;: 26.882004355057887, &quot;p99&quot;: 26.95742242818151, &quot;stddev&quot;: 0.09600564296001704 } } } }<p>Thank you for reading :)

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: Cachekit – High performance caching policies library in Rust

No other tools from this source yet.