Show HN: AgentML – SCXML for Deterministic AI Agents (MIT)

Show HN (score: 5)
Found: November 03, 2025
ID: 2261

Description

Other
Show HN: AgentML – SCXML for Deterministic AI Agents (MIT) Hey HN,

We’ve been experimenting with how to make AI agents more deterministic, observable, and production-safe, and that led us to build AgentML — an open-source language for defining agent behavior as state machines, not prompt chains.

My co-founder posted before but linked to the project website instead of the repo, so resharing here.

AgentML lets you describe your agent’s reasoning and actions as a finite-state model (think SCXML for agents). Each state, transition, and tool call is explicit and machine-verifiable.

That means you can:

- Reproduce any decision path deterministically

- Trace reasoning and tool calls for debugging or compliance

- Guarantee agents only take valid actions (e.g. “never send a payment before verification”)

- Run locally, in the cloud, or within MCP-based frameworks

Example:

```

<?xml version="1.0" encoding="UTF-8"?>

<agentml xmlns="github.com/agentflare-ai/agentml" xmlns:openai="github.com/agentflare-ai/agentml-go/openai" version="1.0" datamodel="ecmascript" name="researcher">

<datamodel>

    <data id="papers" expr="[]"
        schema='{"type":"array","description":"Fetched papers from Hugging Face"}' />

    <data id="summary" expr="''"
        schema='{"type":"string","description":"Summary of the papers"}' />
</datamodel>

<state id="start">

    <onentry>

        <log label="Researcher: "
            expr="`Fetching papers from Hugging Face and summarizing with OpenAI\n`" />

        <openai:generate model="gpt-4o" location="summary" stream="false">

            <openai:prompt>Summarize these recent AI/ML papers from Hugging Face:

                {{fetch "https://huggingface.co/api/daily_papers"}}

                Provide a concise summary of the key trends, breakthroughs, and developments in AI/ML research.
            </openai:prompt>

        </openai:generate>

    </onentry>

    <transition target="log_summary" />
</state>

<state id="log_summary">

    <onentry>

        <log label="Researcher Summary: " expr="summary" />

    </onentry>

    <transition target="done" />
</state>

<final id="done" />

</agentml>

```

We’re using this in Agentflare to add observability, cost tracking, and compliance tracing for multi-agent systems — but AgentML itself is fully open-source (MIT licensed).

Repo: https://github.com/agentflare-ai/agentml Docs: https://docs.agentml.dev

We also launched SQLite-Graph, a Cypher-compatible graph extension for SQLite, which will serve as the base for AgentML’s native memory layer. It’s also MIT licensed: https://github.com/agentflare-ai/sqlite-graph

Would love feedback from anyone building with LLM orchestration frameworks, rule-based systems, or embedded MCP tool servers… especially around how to extend deterministic patterns to multi-agent coordination.

— Jeff @ Agentflare

More from Show

Show HN: WebGPU React Renderer Using Vello

Show HN: WebGPU React Renderer Using Vello I&#x27;ve built a package to use Raph Levien&#x27;s Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code

Show HN: On the edge of Apple Silicon memory speeds

Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB&#x2F;s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU&#x27;s how benchmark works on those. I have been able to test this on M1 and M4.<p>command : &#x27;memory_benchmark -non-cacheable -count 5 -output results.JSON&#x27; (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: &quot;copy_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 106.65421233311835, &quot;max&quot;: 106.70240696071005, &quot;median&quot;: 106.65069297260811, &quot;min&quot;: 106.6336774994254, &quot;p90&quot;: 106.66606919223108, &quot;p95&quot;: 106.68423807647056, &quot;p99&quot;: 106.69877318386216, &quot;stddev&quot;: 0.01930653530818627 }, &quot;values&quot;: [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 115.83111228356601, &quot;max&quot;: 116.11098114619033, &quot;median&quot;: 115.84480882265643, &quot;min&quot;: 115.56959026587722, &quot;p90&quot;: 115.99667266786554, &quot;p95&quot;: 116.05382690702793, &quot;p99&quot;: 116.09955029835784, &quot;stddev&quot;: 0.1768243167963439 }, &quot;values&quot;: [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, &quot;write_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 65.55966046805113, &quot;max&quot;: 65.59040040480241, &quot;median&quot;: 65.55933583741347, &quot;min&quot;: 65.50911885624045, &quot;p90&quot;: 65.5840272860955, &quot;p95&quot;: 65.58721384544896, &quot;p99&quot;: 65.58976309293172, &quot;stddev&quot;: 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: &#x27;memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON&#x27;<p>Example M4 from 100 loops: &quot;sequential_forward&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 116.38363691482549, &quot;max&quot;: 116.61212708384109, &quot;median&quot;: 116.41264548721367, &quot;min&quot;: 115.449510036971, &quot;p90&quot;: 116.54143114134801, &quot;p95&quot;: 116.57314206456576, &quot;p99&quot;: 116.60095068065866, &quot;stddev&quot;: 0.17026641589059727 } } } }<p>&quot;strided_4096&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.460392735220456, &quot;max&quot;: 27.7722419653915, &quot;median&quot;: 26.457051473208285, &quot;min&quot;: 25.519925729459107, &quot;p90&quot;: 27.105171215736604, &quot;p95&quot;: 27.190715938337473, &quot;p99&quot;: 27.360449534513144, &quot;stddev&quot;: 0.4730857335572576 } } } }<p>&quot;random&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.71367836895143, &quot;max&quot;: 26.966820487564327, &quot;median&quot;: 26.69907406197067, &quot;min&quot;: 26.49374804466308, &quot;p90&quot;: 26.845236287807374, &quot;p95&quot;: 26.882004355057887, &quot;p99&quot;: 26.95742242818151, &quot;stddev&quot;: 0.09600564296001704 } } } }<p>Thank you for reading :)

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: AI video generator that outputs React instead of video files

Show HN: AI video generator that outputs React instead of video files Hey HN! This is Mayank from Outscal with a new update. Our website is now live. Quick context: we built a tool that generates animated videos from text scripts. The twist: instead of rendering pixels, it outputs React&#x2F;TSX components that render as the video.<p>Try it: <a href="https:&#x2F;&#x2F;ai.outscal.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;ai.outscal.com&#x2F;</a> Sample video: <a href="https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26-18-47-41" rel="nofollow">https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26...</a><p>You pick a style (pencil sketch or neon), enter a script (up to 2000 chars), and it runs: scene direction → ElevenLabs audio → SVG assets → Scene Design → React components → deployed video.<p>What we learned building this:<p>We built the first version on Claude Code. Even with a human triggering commands, agents kept going off-script — they had file tools and would wander off reading random files, exploring tangents, producing inconsistent output.<p>The fix was counterintuitive: fewer tools, not more guardrails. We stripped each agent to only what it needed and pre-fed context instead of letting agents fetch it themselves.<p>Quality improved immediately.<p>We wouldn&#x27;t launch the web version until this was solid. Moved to Claude Agent SDK, kept the same constraints, now fully automated.<p>Happy to discuss the agent architecture, why React-as-video, or anything else.

No other tools from this source yet.