Show HN: Django Keel – 10 Years of Django Best Practices in One Template

Show HN (score: 5)
Found: October 21, 2025
ID: 2007

Description

Other
Show HN: Django Keel – 10 Years of Django Best Practices in One Template After a decade of shipping Django to production, I got tired of solving the same setup problems on every new project.

Environment-first settings. Sensible auth defaults. Structured logging. CI from day zero. Pre-commit hooks. Docker. Security hardening. Every project meant two days of boilerplate before writing business logic.

So I built Django Keel: a production-ready Django starter that eliminates the yak-shaving. GitHub: https://github.com/CuriousLearner/django-keel

*What you get*:

- 12-factor config with environment-based secrets - Production-hardened security defaults - Pre-wired linting, formatting, testing, pre-commit hooks - CI workflow ready to go - Clear project structure that scales - Documentation with real trade-offs explained

*Background*:

I maintained a popular cookiecutter template for years. Django Keel is what that should've been from the startβ€”battle-tested patterns without the accumulated cruft.

*Who it's for*:

Teams and solo builders shipping Django to production who want a strong baseline without tech debt. Feedback welcome on what works, what doesn't, and what's missing. Issues and PRs appreciated.

More from Show

Show HN: WebGPU React Renderer Using Vello

Show HN: WebGPU React Renderer Using Vello I've built a package to use Raph Levien's Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code

Show HN: On the edge of Apple Silicon memory speeds

Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB&#x2F;s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU&#x27;s how benchmark works on those. I have been able to test this on M1 and M4.<p>command : &#x27;memory_benchmark -non-cacheable -count 5 -output results.JSON&#x27; (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: &quot;copy_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 106.65421233311835, &quot;max&quot;: 106.70240696071005, &quot;median&quot;: 106.65069297260811, &quot;min&quot;: 106.6336774994254, &quot;p90&quot;: 106.66606919223108, &quot;p95&quot;: 106.68423807647056, &quot;p99&quot;: 106.69877318386216, &quot;stddev&quot;: 0.01930653530818627 }, &quot;values&quot;: [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 115.83111228356601, &quot;max&quot;: 116.11098114619033, &quot;median&quot;: 115.84480882265643, &quot;min&quot;: 115.56959026587722, &quot;p90&quot;: 115.99667266786554, &quot;p95&quot;: 116.05382690702793, &quot;p99&quot;: 116.09955029835784, &quot;stddev&quot;: 0.1768243167963439 }, &quot;values&quot;: [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, &quot;write_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 65.55966046805113, &quot;max&quot;: 65.59040040480241, &quot;median&quot;: 65.55933583741347, &quot;min&quot;: 65.50911885624045, &quot;p90&quot;: 65.5840272860955, &quot;p95&quot;: 65.58721384544896, &quot;p99&quot;: 65.58976309293172, &quot;stddev&quot;: 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: &#x27;memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON&#x27;<p>Example M4 from 100 loops: &quot;sequential_forward&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 116.38363691482549, &quot;max&quot;: 116.61212708384109, &quot;median&quot;: 116.41264548721367, &quot;min&quot;: 115.449510036971, &quot;p90&quot;: 116.54143114134801, &quot;p95&quot;: 116.57314206456576, &quot;p99&quot;: 116.60095068065866, &quot;stddev&quot;: 0.17026641589059727 } } } }<p>&quot;strided_4096&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.460392735220456, &quot;max&quot;: 27.7722419653915, &quot;median&quot;: 26.457051473208285, &quot;min&quot;: 25.519925729459107, &quot;p90&quot;: 27.105171215736604, &quot;p95&quot;: 27.190715938337473, &quot;p99&quot;: 27.360449534513144, &quot;stddev&quot;: 0.4730857335572576 } } } }<p>&quot;random&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.71367836895143, &quot;max&quot;: 26.966820487564327, &quot;median&quot;: 26.69907406197067, &quot;min&quot;: 26.49374804466308, &quot;p90&quot;: 26.845236287807374, &quot;p95&quot;: 26.882004355057887, &quot;p99&quot;: 26.95742242818151, &quot;stddev&quot;: 0.09600564296001704 } } } }<p>Thank you for reading :)

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: AI video generator that outputs React instead of video files

Show HN: AI video generator that outputs React instead of video files Hey HN! This is Mayank from Outscal with a new update. Our website is now live. Quick context: we built a tool that generates animated videos from text scripts. The twist: instead of rendering pixels, it outputs React&#x2F;TSX components that render as the video.<p>Try it: <a href="https:&#x2F;&#x2F;ai.outscal.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;ai.outscal.com&#x2F;</a> Sample video: <a href="https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26-18-47-41" rel="nofollow">https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26...</a><p>You pick a style (pencil sketch or neon), enter a script (up to 2000 chars), and it runs: scene direction β†’ ElevenLabs audio β†’ SVG assets β†’ Scene Design β†’ React components β†’ deployed video.<p>What we learned building this:<p>We built the first version on Claude Code. Even with a human triggering commands, agents kept going off-script β€” they had file tools and would wander off reading random files, exploring tangents, producing inconsistent output.<p>The fix was counterintuitive: fewer tools, not more guardrails. We stripped each agent to only what it needed and pre-fed context instead of letting agents fetch it themselves.<p>Quality improved immediately.<p>We wouldn&#x27;t launch the web version until this was solid. Moved to Claude Agent SDK, kept the same constraints, now fully automated.<p>Happy to discuss the agent architecture, why React-as-video, or anything else.

No other tools from this source yet.