Show HN: I made a calculator that works over disjoint sets of intervals
Show HN (score: 5)Description
One reason for this is that standard interval arithmetic has really poor handling of division by intervals containing zero. If you compute 1 / [-1, 2] in regular interval arithmetic, you get either [-∞, +∞], or you have to say that the operation is undefined. Both solutions are virtually useless. The real answer of course is [-∞, -1] U [0.5, +∞]: i.e. a union of two disjoint intervals.
This is useful because you can confidently exclude a non empty set of the real numbers ([-1, 0.5]) from the set of possible values that you can get by dividing 1 by a number between -1 and 2.
But this definition of interval division yields a value that is not an interval. This is a problem if you want to define a closed arithmetic system, where you can build and evaluate arbitrary expression over interval values.
(This behavior extends to any non continuous function like tan() for example, which is implemented in my project - not without difficulties!)
Well the obvious solution is to define your arithmetic over disjoint unions of intervals. This is the subject of a 2017 paper called "Interval Unions" by by Schichl, H., Domes, F., Montanher, T. and Kofler, K..
This open-source project I made implements interval union arithmetic in TypeScript in the form of a simple interactive calculator, so you can try it out for yourself! The underlying TypeScript library is dependency free and implements interval union arithmetic over IEEE 754 double precision floats (JS native number type) with outward rounding. This guarantees accuracy of interval results in the presence of rounding issue inherent to floating point.
More from Show
Show HN: WebGPU React Renderer Using Vello
Show HN: WebGPU React Renderer Using Vello I've built a package to use Raph Levien's Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code
Show HN: On the edge of Apple Silicon memory speeds
Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB/s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU's how benchmark works on those. I have been able to test this on M1 and M4.<p>command : 'memory_benchmark -non-cacheable -count 5 -output results.JSON' (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: "copy_gb_s": { "statistics": { "average": 106.65421233311835, "max": 106.70240696071005, "median": 106.65069297260811, "min": 106.6336774994254, "p90": 106.66606919223108, "p95": 106.68423807647056, "p99": 106.69877318386216, "stddev": 0.01930653530818627 }, "values": [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, "read_gb_s": { "statistics": { "average": 115.83111228356601, "max": 116.11098114619033, "median": 115.84480882265643, "min": 115.56959026587722, "p90": 115.99667266786554, "p95": 116.05382690702793, "p99": 116.09955029835784, "stddev": 0.1768243167963439 }, "values": [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, "write_gb_s": { "statistics": { "average": 65.55966046805113, "max": 65.59040040480241, "median": 65.55933583741347, "min": 65.50911885624045, "p90": 65.5840272860955, "p95": 65.58721384544896, "p99": 65.58976309293172, "stddev": 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: 'memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON'<p>Example M4 from 100 loops: "sequential_forward": { "bandwidth": { "read_gb_s": { "statistics": { "average": 116.38363691482549, "max": 116.61212708384109, "median": 116.41264548721367, "min": 115.449510036971, "p90": 116.54143114134801, "p95": 116.57314206456576, "p99": 116.60095068065866, "stddev": 0.17026641589059727 } } } }<p>"strided_4096": { "bandwidth": { "read_gb_s": { "statistics": { "average": 26.460392735220456, "max": 27.7722419653915, "median": 26.457051473208285, "min": 25.519925729459107, "p90": 27.105171215736604, "p95": 27.190715938337473, "p99": 27.360449534513144, "stddev": 0.4730857335572576 } } } }<p>"random": { "bandwidth": { "read_gb_s": { "statistics": { "average": 26.71367836895143, "max": 26.966820487564327, "median": 26.69907406197067, "min": 26.49374804466308, "p90": 26.845236287807374, "p95": 26.882004355057887, "p99": 26.95742242818151, "stddev": 0.09600564296001704 } } } }<p>Thank you for reading :)
Show HN: Cachekit – High performance caching policies library in Rust
Show HN: Cachekit – High performance caching policies library in Rust
Show HN: AI video generator that outputs React instead of video files
Show HN: AI video generator that outputs React instead of video files Hey HN! This is Mayank from Outscal with a new update. Our website is now live. Quick context: we built a tool that generates animated videos from text scripts. The twist: instead of rendering pixels, it outputs React/TSX components that render as the video.<p>Try it: <a href="https://ai.outscal.com/" rel="nofollow">https://ai.outscal.com/</a> Sample video: <a href="https://outscal.com/v2/video/ai-constraints-m7p3_v1/12-01-26-18-47-41" rel="nofollow">https://outscal.com/v2/video/ai-constraints-m7p3_v1/12-01-26...</a><p>You pick a style (pencil sketch or neon), enter a script (up to 2000 chars), and it runs: scene direction → ElevenLabs audio → SVG assets → Scene Design → React components → deployed video.<p>What we learned building this:<p>We built the first version on Claude Code. Even with a human triggering commands, agents kept going off-script — they had file tools and would wander off reading random files, exploring tangents, producing inconsistent output.<p>The fix was counterintuitive: fewer tools, not more guardrails. We stripped each agent to only what it needed and pre-fed context instead of letting agents fetch it themselves.<p>Quality improved immediately.<p>We wouldn't launch the web version until this was solid. Moved to Claude Agent SDK, kept the same constraints, now fully automated.<p>Happy to discuss the agent architecture, why React-as-video, or anything else.
No other tools from this source yet.