Show HN: Dashboard tracking all GitHub PRs and analyzing Code Agent activity

Show HN (score: 5)
Found: July 08, 2025
ID: 187

Description

Other
Show HN: Dashboard tracking all GitHub PRs and analyzing Code Agent activity Hi HN,

We are researchers from ETH Zurich interested in the real-world adoption and impact of Code Agents.

To measure this, we built a dashboard, scraping all public PRs on GitHub, analyzing which are created by different code agents (Codex, Jules, Copilot, Devin, etc.), and measuring their merge rates, sliced by various repository and PR characteristics.

https://insights.logicstar.ai

Since mid-May, we've analyzed over 10 million PRs and already found some interesting trends:

Usage is high, but shallow. Agents submit ~7% of all PRs overall, but only ~1–2% on popular repos. Most activity is in low-star or experimental projects.

Merge rates vary drastically. On low-traffic repos, some agents get 90%+ of their PRs merged. On popular projects, that can drop to <25%.

Pre-review helps. Agents that require human-in-the-loop review (e.g., Jules, Codex) have 30–50% higher merge rates than Copilot-style fire-and-forget PRs.

Bias toward new code. Agent PRs mostly add code. Refactorings and deletions are rare.

If you have ideas for what other characteristics we should look at let us know or play with the code yourself

More from Show

Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust)

Show HN: KeyEnv – CLI-first secrets manager for dev teams (Rust) Hi HN,<p>I built KeyEnv because I was tired of the &quot;can you Slack me the Stripe key?&quot; workflow.<p><pre><code> The problem: My team&#x27;s secrets lived in a mix of Slack DMs, shared Google Docs, and .env files that definitely weren&#x27;t in .gitignore at some point. Enterprise tools like Vault required more DevOps time than we had. Doppler was close but felt heavier than we needed. What KeyEnv does: keyenv init # link project keyenv pull # sync secrets to local .env keyenv run -- npm start # inject secrets, run command That&#x27;s basically it. Secrets are encrypted client-side (AES-256-GCM) before leaving your machine. Zero-knowledge architecture—we can&#x27;t read your secrets even if we wanted to. Technical details: - Single Rust binary, no runtime dependencies - Works offline (cached secrets) - RBAC for teams (owner&#x2F;admin&#x2F;member&#x2F;viewer) - Service tokens for CI&#x2F;CD - Full audit trail Honest tradeoffs: - SaaS only, no self-hosted option - Fewer integrations than Doppler - If you need dynamic secrets or PKI, use Vault Pricing: Free tier (3 projects, 100 secrets), $12&#x2F;user&#x2F;month for teams. Would love feedback on the CLI UX and any rough edges. Happy to answer questions about the architecture. </code></pre> <a href="https:&#x2F;&#x2F;www.keyenv.dev" rel="nofollow">https:&#x2F;&#x2F;www.keyenv.dev</a>

Show HN: WebTerm – Browser-based terminal emulator

Show HN: WebTerm – Browser-based terminal emulator

Show HN: WebGPU React Renderer Using Vello

Show HN: WebGPU React Renderer Using Vello I&#x27;ve built a package to use Raph Levien&#x27;s Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code

Show HN: On the edge of Apple Silicon memory speeds

Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB&#x2F;s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU&#x27;s how benchmark works on those. I have been able to test this on M1 and M4.<p>command : &#x27;memory_benchmark -non-cacheable -count 5 -output results.JSON&#x27; (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: &quot;copy_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 106.65421233311835, &quot;max&quot;: 106.70240696071005, &quot;median&quot;: 106.65069297260811, &quot;min&quot;: 106.6336774994254, &quot;p90&quot;: 106.66606919223108, &quot;p95&quot;: 106.68423807647056, &quot;p99&quot;: 106.69877318386216, &quot;stddev&quot;: 0.01930653530818627 }, &quot;values&quot;: [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 115.83111228356601, &quot;max&quot;: 116.11098114619033, &quot;median&quot;: 115.84480882265643, &quot;min&quot;: 115.56959026587722, &quot;p90&quot;: 115.99667266786554, &quot;p95&quot;: 116.05382690702793, &quot;p99&quot;: 116.09955029835784, &quot;stddev&quot;: 0.1768243167963439 }, &quot;values&quot;: [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, &quot;write_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 65.55966046805113, &quot;max&quot;: 65.59040040480241, &quot;median&quot;: 65.55933583741347, &quot;min&quot;: 65.50911885624045, &quot;p90&quot;: 65.5840272860955, &quot;p95&quot;: 65.58721384544896, &quot;p99&quot;: 65.58976309293172, &quot;stddev&quot;: 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: &#x27;memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON&#x27;<p>Example M4 from 100 loops: &quot;sequential_forward&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 116.38363691482549, &quot;max&quot;: 116.61212708384109, &quot;median&quot;: 116.41264548721367, &quot;min&quot;: 115.449510036971, &quot;p90&quot;: 116.54143114134801, &quot;p95&quot;: 116.57314206456576, &quot;p99&quot;: 116.60095068065866, &quot;stddev&quot;: 0.17026641589059727 } } } }<p>&quot;strided_4096&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.460392735220456, &quot;max&quot;: 27.7722419653915, &quot;median&quot;: 26.457051473208285, &quot;min&quot;: 25.519925729459107, &quot;p90&quot;: 27.105171215736604, &quot;p95&quot;: 27.190715938337473, &quot;p99&quot;: 27.360449534513144, &quot;stddev&quot;: 0.4730857335572576 } } } }<p>&quot;random&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.71367836895143, &quot;max&quot;: 26.966820487564327, &quot;median&quot;: 26.69907406197067, &quot;min&quot;: 26.49374804466308, &quot;p90&quot;: 26.845236287807374, &quot;p95&quot;: 26.882004355057887, &quot;p99&quot;: 26.95742242818151, &quot;stddev&quot;: 0.09600564296001704 } } } }<p>Thank you for reading :)

No other tools from this source yet.