Show HN: Twoway, a Go package for HPKE encrypted request-response flows

Show HN (score: 5)
Found: October 08, 2025
ID: 1780

Description

API/SDK
Show HN: Twoway, a Go package for HPKE encrypted request-response flows Hey HN,

I'm Willem from Confident Security, we've built CONFSEC, a provably private AI inference engine. Today, we're excited to open-source twoway: https://github.com/confidentsecurity/twoway

twoway is a Go package that makes it easy to implement secure, encrypted request-response flows. It powers CONFSEC's blind prompt handling, ensuring no one, not even us, can see client requests.

We built twoway on Cloudflare's circl/hpke, it uses Hybrid Public key Encryption to implement two flows: - A one-to-one flow where a sender communicates with a single receiver. This flow is fully compatible with RFC 9458 Oblivious HTTP (OHTTP), and the chunked OHTTP draft RFC. - A one-to-many flow where a sender communicates with one or more receivers. Similar to the Apple's PCC's request flow.

Other features include: - Compatibility with any transport, twoway deals with just the messages. - Chunked messages. - Allows for custom HPKE implementations for specialized needs like cryptographic hardware modules.

Our README has clear examples to get you started, all you need to do is go get and try an encrypted "Hello world" exchange.

Our team will be popping in to answer questions, we'd love to hear your feedback.

Cheers! Willem

More from Show

Show HN: WebGPU React Renderer Using Vello

Show HN: WebGPU React Renderer Using Vello I've built a package to use Raph Levien's Vello as a blazing fast 2D renderer for React on WebGPU. It uses WASM to hook into the Rust code

Show HN: On the edge of Apple Silicon memory speeds

Show HN: On the edge of Apple Silicon memory speeds I have developed open source CLI-tool for Apple Silicon macOS. It measures memory speeds in different ways and also latency. It can achieve up to 96-97% efficiency on read speed on M4 base what is advertised as 120GB&#x2F;s. All memory operations are in assembly.<p>I would really appreciate for results on different CPU&#x27;s how benchmark works on those. I have been able to test this on M1 and M4.<p>command : &#x27;memory_benchmark -non-cacheable -count 5 -output results.JSON&#x27; (close all applications before running)<p>This will generate JSON file where you find sections copy_gb_s, read_gb_s and write_gb_s statics.<p>Example M4 with 10 loops: &quot;copy_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 106.65421233311835, &quot;max&quot;: 106.70240696071005, &quot;median&quot;: 106.65069297260811, &quot;min&quot;: 106.6336774994254, &quot;p90&quot;: 106.66606919223108, &quot;p95&quot;: 106.68423807647056, &quot;p99&quot;: 106.69877318386216, &quot;stddev&quot;: 0.01930653530818627 }, &quot;values&quot;: [ 106.70240696071005, 106.66203166240008, 106.64410802226159, 106.65831409449595, 106.64148106986977, 106.6482935780762, 106.63974821679058, 106.65896986001393, 106.6336774994254, 106.65309236714002 ] }, &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 115.83111228356601, &quot;max&quot;: 116.11098114619033, &quot;median&quot;: 115.84480882265643, &quot;min&quot;: 115.56959026587722, &quot;p90&quot;: 115.99667266786554, &quot;p95&quot;: 116.05382690702793, &quot;p99&quot;: 116.09955029835784, &quot;stddev&quot;: 0.1768243167963439 }, &quot;values&quot;: [ 115.79154681380165, 115.56959026587722, 115.60574235736468, 115.72112860271632, 115.72147129262802, 115.89807083151123, 115.95527337086908, 115.95334642887214, 115.98397172582945, 116.11098114619033 ] }, &quot;write_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 65.55966046805113, &quot;max&quot;: 65.59040040480241, &quot;median&quot;: 65.55933583741347, &quot;min&quot;: 65.50911885624045, &quot;p90&quot;: 65.5840272860955, &quot;p95&quot;: 65.58721384544896, &quot;p99&quot;: 65.58976309293172, &quot;stddev&quot;: 0.02388146120866979 },<p>Patterns benchmark also shows bit more of memory speeds. command: &#x27;memory_benchmark -patterns -non-cacheable -count 5 -output patterns.JSON&#x27;<p>Example M4 from 100 loops: &quot;sequential_forward&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 116.38363691482549, &quot;max&quot;: 116.61212708384109, &quot;median&quot;: 116.41264548721367, &quot;min&quot;: 115.449510036971, &quot;p90&quot;: 116.54143114134801, &quot;p95&quot;: 116.57314206456576, &quot;p99&quot;: 116.60095068065866, &quot;stddev&quot;: 0.17026641589059727 } } } }<p>&quot;strided_4096&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.460392735220456, &quot;max&quot;: 27.7722419653915, &quot;median&quot;: 26.457051473208285, &quot;min&quot;: 25.519925729459107, &quot;p90&quot;: 27.105171215736604, &quot;p95&quot;: 27.190715938337473, &quot;p99&quot;: 27.360449534513144, &quot;stddev&quot;: 0.4730857335572576 } } } }<p>&quot;random&quot;: { &quot;bandwidth&quot;: { &quot;read_gb_s&quot;: { &quot;statistics&quot;: { &quot;average&quot;: 26.71367836895143, &quot;max&quot;: 26.966820487564327, &quot;median&quot;: 26.69907406197067, &quot;min&quot;: 26.49374804466308, &quot;p90&quot;: 26.845236287807374, &quot;p95&quot;: 26.882004355057887, &quot;p99&quot;: 26.95742242818151, &quot;stddev&quot;: 0.09600564296001704 } } } }<p>Thank you for reading :)

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: Cachekit – High performance caching policies library in Rust

Show HN: AI video generator that outputs React instead of video files

Show HN: AI video generator that outputs React instead of video files Hey HN! This is Mayank from Outscal with a new update. Our website is now live. Quick context: we built a tool that generates animated videos from text scripts. The twist: instead of rendering pixels, it outputs React&#x2F;TSX components that render as the video.<p>Try it: <a href="https:&#x2F;&#x2F;ai.outscal.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;ai.outscal.com&#x2F;</a> Sample video: <a href="https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26-18-47-41" rel="nofollow">https:&#x2F;&#x2F;outscal.com&#x2F;v2&#x2F;video&#x2F;ai-constraints-m7p3_v1&#x2F;12-01-26...</a><p>You pick a style (pencil sketch or neon), enter a script (up to 2000 chars), and it runs: scene direction → ElevenLabs audio → SVG assets → Scene Design → React components → deployed video.<p>What we learned building this:<p>We built the first version on Claude Code. Even with a human triggering commands, agents kept going off-script — they had file tools and would wander off reading random files, exploring tangents, producing inconsistent output.<p>The fix was counterintuitive: fewer tools, not more guardrails. We stripped each agent to only what it needed and pre-fed context instead of letting agents fetch it themselves.<p>Quality improved immediately.<p>We wouldn&#x27;t launch the web version until this was solid. Moved to Claude Agent SDK, kept the same constraints, now fully automated.<p>Happy to discuss the agent architecture, why React-as-video, or anything else.

No other tools from this source yet.